首页 > 技术 > 科研 > 正文

无模拉拔过程中镁合金的孪晶诱导动态再结晶行为

科研 3年前 2022-09-02 浏览 110

镁合金血管支架能够被人体完全降解吸收,可以避免金属支架或者药物洗脱所导致的再狭窄和血栓等问题,因而在全球范围内吸引了广泛的关注。但是因为镁合金塑性较差,冷拉拔制备的血管支架用微管在成型过程中易发生断裂现象。而无模拉拔可以提供局部加热,能提高镁合金的塑性变形能力,避免镁合金微管在冷拉拔过程中出现的断裂的问题,进而获得较大的横截面减缩率。此外,使用无模拉拔还可以实现微管晶粒组织细化。然而,由于无模拉拔通过局部加热和局部变形实现,当前对无模拉拔过程中镁合金管材的动态再结晶机制仍不清晰。

最近,日本东京大学的Tsuyoshi Furushima教授课题组利用连续观察的方式对无模拉拔管材在变形区域的动态再结晶机制进行研究,表明在非恒定温度场和非恒定应变速率场的情况下,镁合金可以通过{10-12}拉伸孪晶实现快速晶粒细化。当初始晶粒尺寸较大时,大量{10-12}拉伸孪晶在晶粒内部形成:(1) {10-12}孪晶在晶粒内部快速长大合并,形成亚晶界(2~5°)和小角度晶界(5~15°);(2)在{10-12}孪晶内部会产生{10-12}-{10-12}二次孪晶,进一步细化晶粒。因位错累计,孪晶内部在后续变形过程中也会形成亚晶界(2~5°)和小角度晶界(5~15°),诱导发生连续动态再结晶。本研究明确了{10-12}孪晶在动态再结晶过程中所起的作用,为无模拉拔管材的组织控制提供依据。

本文重点研究了ZM21镁合金管材在{10-12}拉伸孪晶诱导动态再结晶机制,结果如图1所示。在塑性变形开始前,管材受局部温度场的影响,发生静态再结晶。发生静态再结晶后,管材仍保持基面与厚度方向平行。在塑性变形阶段,晶粒内部产生大量{10-12}拉伸孪晶。随着塑性变形的进行,{10-12}拉伸孪晶迅速长大,一方面与相邻的孪晶合并而形成亚晶界和小角度晶界,另一方面也可以在孪晶层片内部继续产生{10-12}-{10-12}二次拉伸孪晶。经过无模拉拔后,管材晶粒尺寸得到充分细化,从19.98 μm减小至6.27 μm,如图2所示。

图1 无模拉拔过程中组织演化(b: 345 ℃; c: 350 ℃; d: 350 ℃; e: 320 °C, 0.08 s-1, 0.12; f: 300 °C, 0.11 s-1, 0.31; g: 270 °C, 0.06 s-1, 0.48)

图2 无模拉拔过程中管材位置1-7的晶粒尺寸

因{10-12}拉伸孪晶在塑性变形过程中会迅速长大合并,通常认为{10-12}孪晶无法有效细化晶粒,孪晶诱导动态再结晶的报道也多与{10-11}压缩孪晶有关。但是在热变形过程中,{10-12}-{10-12}二次拉伸孪晶的产生意味着{10-12}拉伸孪晶也可以作为一种晶粒细化机制,有效的减小晶粒尺寸,如图3所示。随着塑性变形的进行,位错在孪晶界附近的堆积导致{10-12}所特有的87°晶界不断发生变化,取向差变为75~90°。除了导致孪晶界取向差的改变,孪晶内部位错的开动也会进一步导致在孪晶界附近产生亚晶界和小角度晶界,进而导致再结晶机制从{10-12}孪晶诱导动态再结晶转为连续动态再结晶,最终使无模拉拔管材内存呈现混合晶粒组织。

图3 孪晶界取向差在热变形过程中的变化

综上所述,本研究利用连续观察的方法研究无模拉拔过程中的动态再结晶机制,明确了热变形过程中{10-12}拉伸孪晶在动态再结晶过程中所起作用,为无模拉拔管材的组织调控和性能优化提供理论依据,同时也为无模拉拔管材在血管支架上的应用提供基础。

文章发表
该文章发表在《Journal of Magnesium and Alloys》2022年第10卷第3期:

[1] Peihua Du, Shusaku Furusawa, Tsuyoshi Furushima*. Continuous observation of twinning and dynamic recrystallization in ZM21 magnesium alloy tubes during locally heated dieless drawing [J]. Journal of Magnesium and Alloys, 2022, 10(3):730-742.

中文摘要
相比于冷拉拔,无模拉拔可以实现较大的横截面减缩率,因而在制备血管支架用镁合金微管的过程中显示出巨大的优势。但是,因为无模拉拔是在局部加热和局部变形的条件下实现,而当前依旧不了解镁合金管材在无模拉拔过程中的组织演化机制,进而无法有效控制成品管的组织。为了实现组织调控,本研究通过连续观察的方式对无模拉拔管材的组织演化规律进行研究。结果表明无模拉拔过程中发生了静态再结晶和动态再结晶两个过程。静态再结晶发生在塑性变形之前。随着拉拔速率的提升,动态再结晶发生变化:当拉拔速度为0.02 mm/s时,变形机制为孪晶-位错滑移主导,{10-12}拉伸孪晶产生并改变晶格取向以开动位错;当拉拔速度为2 mm/s时,晶粒内部产生大量{10-12}拉伸孪晶,因位错累计孪晶界不断改变取向差,进而导致晶粒细化;当拉拔速率为5 mm/s时,晶粒细化机制主要为连续动态再结晶。这一现象表明,镁合金管材在无模拉拔过程的动态再结晶机制不仅受温度影响,还受拉拔速度影响。

Abstract

Compared to cold drawing, dieless drawing has shown great potential for manufacturing biodegradable Mg alloy microtubes due to the large reduction in area acquired in a single pass. However, owing to the local heating and local deformation, the deformation mechanism during dieless drawing is not clear, and thus causing difficulties in controlling the microstructure of dieless drawn tubes. For the purpose of acquiring a desired microstructure, in this study the deformation mechanism of ZM21 Mg alloy tube was clarified by conducting continuous observation of the microstructural evolution during dieless drawing. The results show that both SRX and DRX occurred during dieless drawing. SRX occurred before the plastic deformation to soften dieless drawn tubes. With increase of feeding speed, the deformation mechanism changed accordingly: (1) At the low-speed of 0.02 mm/s, the deformation mechanism was dominated by twin-slip sliding, during which {10–12} tension twins were generated inside grains to accommodate the plastic deformation by changing the crystal orientation. (2) At the intermediate-speed of 2 mm/s, a twin-DRX process related to {10–12} tension twin was observed, which was characterized by the generation of abundant {10–12} tension twins and the evolution of misorientation angle of {10–12} tension twins. Moreover, the transformation from twin-DRX to CDRX can be observed at the late stage of plastic deformation, which was attributed to the inhomogeneous conditions of dieless drawing. (3) At the high-speed of 5 mm/s, a CDRX process was observed, during which grain boundary sliding and grain tilting were observed, in addition to the gradual rotation of subgrains. These results show that during dieless drawing, DRX is not only a temperature-dependent phenomenon, but also influenced by the variation of feeding speed.

作者简介
第一作者/通讯作者简介

杜佩桦(第一作者),博士,郑州大学讲师,从事金属塑性加工的研究。

Tsuyoshi Furushima(通讯作者),博士/副教授,东京大学机械工程学院。从事金属微成型的研究。

图文编辑:杜佩桦 郑州大学

来源:JMACCMg

- END -
- 0人点赞 -
评论已关闭
not found

暂无评论,你要说点什么吗?